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Abstract. According to a theory proposed in a previous paper by Lou and Hu. starting Bom 
a realization of a Vimoro-type symmetry algebra, we can obIain various (2 + 1)-dimensional 
integrable models under the condition that the models possess the infinitely dimensional VirasOro- 
type symmetry algebn. An explicit realization of the generalized Vforotype symmetry 
algebra is used to obtain concrete invariant models. A set of equations which possesses the 
same infinite dimensional KaoMoody-Vimoro type Lie point symmetry algebra as that of the 
Kadomtsev-Petviashvilli equation is given. 

The integrable and soliton systems in higher-dimensional spacetime have atkacted much 
attention from physicists and mathematicians, e.g. the self-dual Yang-Mills equations have 
been generalized to (2n + 1)-dimensional spacetime [I]; the generalized AKNS system has 
been studied in R”+’ [2]. The symmetry structures of higher-dimensional integrable models 
have also been widely studied [3-81. In particular, recent studies [6-8] show us that the 
generalized higher-order symmetries of some higher-dimensional, integrable models, such 
as the Kadomtsev-Petviashvilli (KP) equation and Toda field equation [7], constitute the 
generalizations of physically significant W, algebras [9]. However, the usual infinite, 
dimensional Lie point symmetries may be more important for higherdimensional models 
[6,8]. For some types of (2 + 1)-dimensional integrable models such as the Davey- 
Stewartson equation [8,10,11] and the (2 + 1)-dimensional Sawada-Kotera equation [U], 
there is no generalized W, algebra constituted by generalized higher-order symmetries with 
arbitrary functions [8,12], but they do possess infinite-dimensional Kac-Moody-Virasoro- 
type,Lie point symmetry algebras [5,1l, 121. It is interesting that among these full Lie point 
symmetry algebras, they possess a common centreless Virasoro-type subalgebra . ~ ~ 
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where f is an arbitrary function of a single independent variable, say time t. It is necessary 
to point out that the model equations are f-independent. When we take f ( f )  as exprt or t' 
(r = 0, f l ,  *Z,. . .) the algebra (1) reduces back to the usual centreless Virasoro algebra. It 
is our understanding that all the known. (2 + I)-dimensional integrable models, for example 
the models in [5] ,  have such a.symmetry subalgebra and that there is, as yet, no known 
non-integrable models possessing such a type of symmetry algebra. According to these 
facts, Lou and Hu proposed a theory [SI: if there exists a symmetry u(f) with arbitrary 
function f ( t )  for a high-dimensional model such that c(f) satisfies the algebra (1). then 
the model may be integrable. Now the problem is how many models are there and how 
are these integrable models to be obtained under this condition. It is obvious that there 
exist infinitely many realizations of the,algebra (1). Using every realization of algebra (l), 
there exist infinitely many corresponding group invariants. That is to say, we can obtain 
infinitely many integrable models under this condition for every realization of algebra (1). 
In this short letter, for a given realization we would like to describe the general process 
for obtaining generalized (2 + 1)-dimensional integrable models under the condition that 
the models possess the Virasoro-type algebra (1). Some well known (2 + l)-dimensionaI 
integrable models will be described in this way. The first step in the derivation of invariant 
equations is.to realize the Lie algebra of the assumed symmetry group in terms of vector 
fields on the space X 0 U of independent and dependent variables [l, 131. In this letter, we 
restrict X to (2 + 1)-dimensional spacetime with coordinates x ,  y, t and U is the space of 
real scalar functions U ( X ,  y, f ) .  The vector fields will all have the form 

v = X ( X ,  Y. r ,  U)a, + Y ( X ,  Y. t ,  .)a, + T ( X ,  Y .  r, .)a, + U ( X ,  ~ , t ,  o,. (2) 

Without loss of generality, to realize the algebra (1) we can choose f to be an arbitrary 
function o f t  and then 

m, Y, t ,  U) = -m (3) 

while X ,  Y and U should have the form 
n 

(X, Y,  U) = - y f ' " ( X i ,  E, U,) (n = 1,2,3, .  . .) (4) 

where f C i )  = (d'/dr')f and Xi, Yi and Vi are functions of ( x ,  y. f ,  U) and should be selected 
such that U = V,satisfies the algebra (1). In order to obtain some concrete significant results, 
we restrict n such that n = 3 and the vector V possesses the form 

i = l  

, ,  

V, = - - f ~ r ~ a , - ~ ~ ~ ~ f + ~ ~ y ~ P ) a ~ - C ~ f y a ~ + ( ~ ~ f ~ + ~ ~ ~ f ' + ~ ~ y ~ f ) a ,  (5) 

where the dots denote the differentiations with respect to time f ,  cz = 1 -q. c3 = a(l  + C Z )  

and c1. cd, cg and cs are four arbitrary constants. It is easy to verify that V, given by 
equation (5) satisfies equation (1). 

In order to construct invariant kth-order partial differential equations (PDES) we need 
the kth prolongation of the vector field (5). The general formula for the kth prolongation 
of a vector field is given, for example, by Olver 131 which has  the^ form 

p r ( W  = v + uxa,, + ura,, + u'a,, + uX%, + uxyaUxr + uy~a, ,  + uxfau,, + . . . 
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(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

U’ = DX(U -Xu, - Yu, - Tu, )  + XU,, + Yu,, + Tuxt 

U y  = D,(U - Xu, - Yup - T u I )  +Xu, + Yuyy,+ Tuyl 

U’ = Dt(U - XU, - Yuy -  TU^) + X U x r  + Yury  TU,^ 

U’”‘’ - - DxUx’-‘yi‘r - ( D . r X ) U x i y j l l  - (DXY)~~~- i~ i+ i t~  - (DxT)~X,-Iyjc,+i 

1 it’ = DyUx;yi-l~‘ - us y 

UX””’ = DIUr 

( D y X ) ~ ~ t + n ~ i - ~ p  -(DyY)~~r~~jIl  - (DyT)~x;si-~j~+t 
i i p  

- (DrX)uxz+lpr,-j - @rY)~,i~j+i~,-i - (DtT)u,iyiLr 

where D,, Dy and Dt are total derivatives. 

by equation (5): 
Using equations (6)-(12), we can calculate the kth prolongation of the vector v defined 

= v + tfux + C ~ P , ,  + [(cI + c 3 ) f u y  + zcSyuxf’ + zC6y?]a,, 

+ [ ( I+  cl)Pur + (c1u + czxu, + c3uy)f’ + (CO + csyZu,)f + ~ ~ ~ Z ? i a . ,  
k +xu + (i - i)cz)fu,.a,  +[(I +3cs)fu, + 2 ~ ~ ~ f ~ ~ , i a . ,  

+ [(I + ZC3)fUryy + ZCSJ(U,, + 2Yu,,,)1a,, + [ ( I+  3C3)fU,,,, 

+ P~u,, + 2Csf(uz +2YuiY) + 2C6fia., 

+ [(z + c3)fuyyy + 6cSs’(u, + yuxyy)lau,.~~ 

+ [(I + CI + C 3 , f U I Y  + f’ccc, + c3)uy + CZXU,), + csyu, + 2C5yuu) 

i=2 

+ 6cs f ( U x x y  + Y ~ ~ ~ ~ y ) l ~ ~ 6 y ~ y  + [( 1 +4c3) fu,+ + cs ff.1 2uxZyy + 8yuXxy,)l a.,+ 

. .  
+ cSf(2yux + y 2 U x y )  + 2C6yf]a~,~ 

+ [Z fUrx  + j ( u r  + C Z X U ~ ~ , +  c~yu,,) + ?(c4 + ~ ~ y ~ u ~ ~ ) ] a ~ , ,  + . . .. (13) 

For a given integer k, all the other extensions Ux’Y’t’ in (6)’for V; can be added into 
equation (13) using recursion relations (lO)<lZ). We do~not give them because of their 
complexity. 

The next procedure to obtain the invariant equations is standard. The general kth-order 
invariant eqcation will have the form 

. ,  

F(x,  y. t ,  U, U,. u y ,  ut, ~. . , U x i y j l I ,  . . .) 0 ( O < i + j + l ( k )  (14) 

where the function F satisfies 

pr(k)Vj . F = 0. . .  (15) 

Thus all we have to do is find the characteristics for equation (15) in’which all the arguments 
in (14) are viewed as independent variables. The characteristics will provide us with a 
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set of elementary invariants Zn(x, y. t, U ,  . . . , uLgyi,r, . . .)(n = 1,2, . . . , N) and the general 
invariant equation is an arbitrary function of the elementary invariants Zn: 

H ( I ' ,  Z'.. . . , IN) = 0. (16) 

Generally, the elementary invariants Z,, (and then H(ZI, 12, . . . , 1.)) are f-dependent. As 
in the known cases, to obtain new integrable models we should selectf-independent model 
equations from equation (16). 

To get the explicit elementary invariants of V ,  we have to solve the characteristic 
equations 

- dux .~ i.. - du . , - dr dy dt 

-cpf +c4xf+c6y2f u x f + C 4 f  

where some of the Ur'yir' can be read off from (13) directly, while others can be obtained 
from recursion relations (10&(12). After finishing some detailed calculations of equation 
(17), we can obtain various group invariants. Here are some examples: 

J" = U n x f l + ( n - l ) c ~  = I a iu  n = 2,3,4,  .. . , k) (18) 

ZI = yf-c' (19) 

(20) z2 = x f --h - c5y2 f -2- f 

23 = U f  + C4.X f f - (C4cS + C6)y2 f -2c,f2 f C6y2 f '-%I f (21) 

14 = a, f + r4f 

25 = U y f c l + "  +C5yf-c'f(2u,f +C4f) f2Csyf'-af-Csyf-C'f2, 

16 =u,P+' +(clr3 + C 2 ~ 2 ~ 4 + ~ ~ r ~ z ~ ) f ) + ( ~ ~ r ~ + ~ ~ r : z ~ ) ( f P - f ~ )  

(22) 

(23) 

+ c6y2 f - 2 y  f 2 7  + f3 - 2ff3) ( 2 4  
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- [(~CZ + 4)csb Jz + ~CZCSII I d 3  + (CZ + 2)csZ~IdfZ . 

-Pc:I:J3fff+2c:I:J3f3 (32) 

(33) 4 5  = Uxxxyf  2c2+ei+1 + 2~511 J4f 

(34) 
116 =unYyf  zc 2+2+2Cs(J3 +2~1Z15)f-,4C~I,?J~f2 

111 =Uxyyyf3*+l +6Cs(is+ZlI16)f- 1 2 ~ ~ ( Z l J 3 + , I , ? h s ) f ~ f S ~ ~ I ~ J 4 f ~  (35) 

118 =UyyyyfZci+2+4C5(31~1 +211Ii,)f- 12c:(J2+411Is +21:116)f2 

+ 16c:(3Z:J3 +2Z;Zl5)f3 - 1 6 c ~ Z ~ J 4 j 4 ~  (36) 
4 9  = UtyfCI+*+I  + [(Cl + C3)ZS + c2.1217 + C3ZlI9  + 2qz, Idf 

-csr1[4f4+(1 + ~ C 3 ~ ~ 1 ~ 7 + 2 ~ 2 I z J z ] f ~ + C 5 ~ l ( ~ ~ 4 + ~ ~ ~ ~ ) f f + ~ C ~ ~ ~  f'f 
... . .  - 211(2C6 + C4Cs + C:Z;Jz)f f f + 211 (C6 + C4C5 + @ J z ) f 3 .  (37) 

Hence the most general V, invariant equation is 

H(J., Im,n  =2,4 ,~3 ,  ..., k;m = 1,2,3 ,... ) = O .  (38) 

Generally, the models obtained from equation (3) are quite complicated and f-dependent. 
In order to obtain integrable models we should select out the models which arefindependent 
from  equation (38); this is still a difficult task because the elementary invariants are 
dependent on the arbitrary function f h a complicated manner. Fortunately, some physically 
significant models can be read from equation (38). For instance, if we fix the constants ci, 
i = l , 2  ,..., 6,as 

1 . c6=- ' 
1 c5 = -- . 

2 1 2 1 
3 3 3 3 A  6B 6AB 

c 3 = - ,  c4=-- c, = - - c 2 = -  

(39) 
with three arbitrary constants A, B and C, the following group invariant equation 

H I  Iia + A Z ~ J Z  +AI: + BI9 + CJ4 = 0 (40) 

is really an f-independent integrable evolution equation: 

U L ~  + (Auux + CuXx.r).r + Buy, = 0. (41) 

Equation (41) is just the well known KP equation for C # 0 and the Khokhlov-Zabolotskaya 
(KZ) equation [141 for C = 0. Of~course the KP equation and the KZ equation are integrable 
under the other traditional condition. From equation (38) we can obtain infinitely many 
f -independent invariant equations; here are two other examples: 

~ , 

~ x x [ ~ r x  + (Auux + C u x x x ) ,  + BUyyl + Eu:,, 0 (42) 

and 

U 
~~ 

... 
utx + Auu,, + Au: + Buy? + GU:$(*+~) = 0 (M = 2,3, . . .) 

n=2 
(43) 
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with the same condition (39) while A, B ,  C, (C, = C) and E are arbitrary constants. 
Equations (42) and (43) can be read from 

and 

M 
H I  + cC,J,6/(n+2) = 0 (M = 2 , 3 , .  . .) (45) 

n=2 

respectively. Using the formal series symmetry approach [7] and/or the standard Lie point 
symmetry approach, one can easily verify that the models (43) and (44) possess exactly the 
same Lie point symmetries as those of the KP equation which have been given in [15] and 
constitute the Kac-Moody-Virasoro-type algebra structure. 

Using different realizations of the Virasoro-rype algebra (1) and the same procedure 
given here, not only can we obtain all the known (2 + 1)-dimensional integrable models 
but also a large number of new integrable models under the condition that they possess ,the 
Virasoro-type infinite dimensional symmetry algebra. Models obtained in this way need to 
be studied further, in particular to find whether the new models are integrable or not under 
the other traditional condition. 

This work was supported by the Nature Sciences Foundation of China and the Natural 
Science Foundation of Zhejiang Province of China. One of the authors (Lou) would like to 
thank Professor G-j Ni and Drs Q-p Liu and X-b Hu for their helpful discussions. 
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