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Abstract, According to a theory proposed in a previous paper by Lou and Hu, stariing from
a realization of a Virasoro-type symmetry algebra, we can obtain various (2 4 1)-dimensional
integrable models under the condition that the models possess the infinitely dimensional Virasoro-
type symmetry algebra. An explicit realization of the generalized Virasoro-type symmetry
algebra is used to obtain concrete invariant models. A set of equations which possesses the
same infinite dimensional Kac—Moody—-Virasoro type Lie point symmetry algebra as that of the
Kadomtsev—Petviashvilli equation is given,

The integrable and soliton systems in higher-dimensional spacetime have atiracted much
attention from physicists and mathematicians, e.g. the self-dual Yang-—Mills equations have
been generalized to (2n + 1)-dimensional spacetime [1]; the generalized AKNS system has
been studied in R**! [2]. The symmetry structures of higher-dimensional integrable models
" have also been widely studied [3-8]. In particular, recent studies [6-8] show us that the
generalized higher-order symmetries of some higher-dimensional integrable models, such
as the Kadomtsev—Petviashvilli (XpP) equation and Toda field equation [7], constitute the
generalizations of physically significant W, algebras [9]. However, the usual infinite-
dimensional Lie point symmetries may be more important for higher-dimensional models
[6,8]. For some types of (2 4 1)-dimensional integrable models such as the Davey-
Stewartson equation [8, 10,117 and the (2 + 1)-dimensional Sawada-Kotera equation [12],
there is no generalized W, algebra constituted by generalized higher-order symmetries with
arbitrary functions [8, 12], but they do possess infinite-dimensional Kac—Moody-Virasoro-
type Lie point symmetry algebras [3,11, 12]. It is interesting that among these full Lie pomt
symmetry algebras, they possess a common centreless Virasoro-type subalgebra

o) ol =0(fife— Hfi) - - o (1)
. 1t Mailing address. ]

(305-4470/95/060121+06$19.50 (@ 1995 IOP Publishing Litd 1.191



L192 Letter fo the Editor

where f is an arbitrary function of a single independent variable, say time z. It is necessary
to peint out that the model equations are f-independent. When we take f(z) as exprt or ¢
(r =40, %1, £2,...) the algebra (1) reduces back to the usval centreless Virasoro algebra. It
is our understanding that all the known {2 4 1)-dimensional integrable models, for example
the models in [5], have such 4 symmetry subalgebra and that there is, as vet, no known
non-integrable models possessing such a2 type of symmetry algebra. According to these
facts, Lou and Hu proposed a theory [8]: if there exists a symmetry o (f) with arbitrary
function f(¢) for a high-dimensicnal model such that & (f) satisfies the algebra (1), then
the model may be integrable. Now the problem is how many models are there and how
are these integrable models to be obtained under this condition. It is obvious that there
exist infinitely many realizations of the algebra (1). Using every realization of algebra (1),
there exist infinitely many corresponding group invariants. That is to say, we can obtain
infinitely many integrable models under this condition for every realization of algebra (1).
In this short letter, for a given realization we would like to describe the general process
for obtaining generalized (2 + 1)—dim_énsiona1 integrable modeis under the condition that
the models possess the Virasoro-type algebra (1). Some well known (2 + 1)-dimensional
integrable models will be deseribed in this way. The first step in the derivation of invariant
equations is to realize the Lie algebra of the assumed symmetry group in terms of vector
fields on the space X @ U of independent and dependent variables [1,13]. In this letter, we
restrict X to (2 4 1)-dimensional spacetime with coordinates x, y, ¢ and U is the space of
real scalar functions u(x, v,1). The vector fields will all have the form

V=Xt +Yxy w8+ T,y fu)d,+Ulx, y, £, 1)d,. (5]

Without loss of generality, to realize the algebra (1) we can choose f to be an arbitrary
function of ¢ and then

Tx, v, t,u)=—f() (3)
while X, ¥ and UV should have the form

n

XL =Y fOX %0 @=123..) @
i=1
where F© = (d!/dr’) f and X, ¥; and UJ; are functions of (x, v, z, &) and should be selected
such that ¢ = V satisfies the algebra (1). In order to obtain some concrete significant results,
we restrict r such that z = 3 and the vector V' possesses the form

Vi = —f@)8 ~ (e f + 05y’ F)oe = s fydy + (a1 fu b eanf + 63 oy (5)

where the dots denote the differentiations with respect to time £, ¢ = 1—¢), 3 = %(1 +c2)
and ¢1, ¢4, ¢5 and ¢g are four arbitrary constants. It is easy to verify that V] given by
equation (5) satisfies equation (1). ’

In order to construct invariant kth-order partial differential equations (PDEs) we need
the kth prolongation of the vector field (5). The general formula for the &th pralongation
of a vector field is given, for example, by Olver [3] which has the form

prV =V + U*8,_+ U*By, + U'd,, + U0y, + U™8,_ + UM,

Fod gl
=V+ > UrYy
Ii+jHgk

w T erau" +--
(xiyin = 850) 8 u) (6)

i ridl
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U* = DU — Xup = Yty — Tur) + Xty + Yiegy + Tlig . (D
U” = Dy(U — Xuy — Yty — Tt} + Xty + Yty + Ty, ‘ ‘ ®)
U'=D,(U — Xuy — Yuy — Tu)) + Xttxe + Yy + Tty ' %
gEve = DU syt _ (Dx X)ugiyip — (DX ttgi-ipivipg — Dy T)”xﬂ‘yf;m (10)
U = DU — Oy Xygeyig — Dy ity — Oy )ity (11}
v —p i (D Xt yim1 _ DY)t giyirig-t — O Tttgigig (12)

where D, D, and Dy are total derivatives.

Using equations (6)—(12), we can calculate the kth prolongatlon of the vector V1 defined
. by equation (5):
POV = Vi + (fux + o)y, + [ + e3) fuy + 2esyuc f +2es9 18,

+ [(1 + e1) Fury =+ (cr + coxuts + caey) f + (eax + es°u) f + c6y” F 18,

k - . ) . .
+ ¥ (U G — Dea) fup By, + (1 +3¢3) frury + 2053 fuza)o,,
=2

+ [(1 + 2¢3) Frecyy + 265 F (ax + 29822y 080,,, + (1 363} Ftnyyy

+605.f (axy ~+ Vit ayy ) Bueyy, HI(LH4C5) F gyt 05 F (1200 00yy +8Yit10y3)1u s
+ 2 f ttyy + 205 f (x + 2yitry) + 206 104,

+[(2 + €3) Futyyy + 665 F (ny + Yiizyy)13s, ,

+ (1 + e1 + ¢3) fury + FUe1 + e3)uy + caxiigy, + 31,y + 205y0;:)

+ o5 F 2yt ++ Yugy) + ZCsy'fEIBH,y |

+ 2 e+ F i + coxtin + C3Yug) + Flos+ sy, + - (13)

For a given integer k, all the other extensions U*¥* in (6) for Vi can be added into
equation (13) using recursion relations (10)~(12). We do_not give Lhem because of their

complexity.
The next procedure to obtain the invariant equations is standard The ueneral kth-order

invariant equation will have the form

F 30ttty tn iy vty ) =0 OKitj+I<R) (1)
where the function F satisfies

V] . F =0, i g L ‘ (15)

Thus ali we have to do is find the characteristics for equation (15) in which all the arguments
in (14) are viewed as independent variables. The characteristics will provide us with a
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set of elementary invariants I(x, y, ¢, 4, ..., 4y, .. ){n =1,2,..., N) and the general
invariant equation is an arbitrary function of the elementary invariants I,

B, by ..., Iy) =0. (16)

Generally, the elementary invariants [, (and then H(l, I, ..., 1)) are f-dependent. As
in the known cases, to obtain new integrable models we should select f~independent model
equations from equation (16).

To get the explicit elementary invariants of V), we have to solve the characteristic
equations

dx_-_dy_dt__ du _ dit, _
—cxf —ayf =f —c.ﬂuf"-lq- c@xf+c;y2}5 Cuefhef
duyipiyt .
=y T ¥))

where some of the U**'* can be read off from (13) directly, while others can be obtained
from recursion relations (103—(12). After finishing some detailed calculations of equation
(17), we can obtain various group invariants. Here are some examples:

Ty = by 10 (ttnx = tpr = 3"ut n=23,4,..,k) (18)
I =yf™ - (19)
Lh=xf"%—csy’ff | _ (20
L= uf + caxf~ f — §(cacs + ca)y’ F 2+ ey’ F10F (21)
Ii=uyf+caf ’ (22)
Is = uy FOF 4 csyf = fQue f + eaf) + 206370 F — cayf (23)
L=uwr" + (b +abl+alB) ) +ah+oalL) f— 1)
ey ffEF + P -2F F ) | (24)
Ir =ty fOF o 205y £ F , (25)
Tg = tary FFOF 4 205 Pl i ST f ' 26)
Iy = uyy f* + 205Qyttry f + 2y%csttes |+ e F)f + (cacs — ) f2 +2¢6 f F 27
Do = ity fP4 [ty fbCoRttes 297 —(co—~203+1)65 Yot e fCayitay FIf 4+ (catresy’un) f F
(28)
It = Mgy PP e 20s(ly + 21 1) f — 421005 2 (29)
Dz = Uyyy FO2 4 Ges(ly + ) F — 1230l + L) f2 + 821 1 f° G0)
By = U F2 4+ Qesy + bl + s LI f +esiEB(F f = D) (31)

D= by F72 (e + DI+ colodg + sl + 265 ) f + Qesh b+ osITI) f f
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= [Q@cz+YeshiJy + 2escsli b Tz + (oo + 2)es P Ig] f2

=23 B f + 223 0 £ - {32)
D5 = Uy PP 4 205Ky I, f ' (33)
Ii6 = Uy F2442 4 205(J3 + 251 Iis) f — 42120, f2 ' (34)
Ity = thayyy £ + Ges(s + D i) f — 1263 s + IP1is) £ + 821 7, f° (35)
Dig = tyyyy f23* 4 dos(B3lu + 20 1) f — 12630 + 45 Iy + 202 116) £

F16cE3IT Ty + 20 I1s) 2 = 16ck It I (36)

Tig = 1ty FOVeH L[y + e3)]s + colaly + eslidy + 2es 1 1) f

—esh4l + (14 2c) 1 7 + 202, B1 2 + es I 21 + hIFf +2csh 72 F
— 201(2cs + cacs + 31T R) £ F F ++ 2L (s + cacs + IR F3. (37)

Hence the most general V; invariant equation is
HJp Lnyn=2,43,. .. k;m=1,2,3,..)=0. . . (3%

Generally, the models obtained from equation (3) are quite complicated and f-dependent.
In order to obtain integrable models we should select out the models which are Jrindependent
from -equation (38); this is still a difficult task because the elementary invariants are
- dependent on the arbitrary function f'in a complicated manner. Fortunately, some physically
significant models can be read from eq_ilation (38). For instance, if we fix the constants ¢;,
i=1,2,...,6,as

_2 o — 1 o — 2 o= 1 o= 1 1
a=3 a=3 =3 a=-g *T76B " T gam
(39)
with three arbitrary constants A, B and C, the following group invariant equation
Hi=ho+t ALl + A2+ Bly+Cly =0 (40)
is really an f-independent integrable evolution equation:
- Uz + (Anty + Ctyer)y + Buyy = 0. . (41)

Equation (41) is just the well known KP equation for C # 0 and the Khokhlov-Zabolotskaya

(KZ) equation [14] for C = 0. Of-course the KP equation and the KZ equation are integrable

_under the other traditional condition. From equation (38) we can obtain infinitely many
f-independent invariant equations; here are two other examples: .

Upeltter - (Auuy, + Crygyy)y + B"iyy] + Eui;; =0 (42)

and

M - - -
Uer + Abtiter + Al + Buyy + 3 Cuu¥" =0 (M=2,3.) (43)

n=1
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with the same condition (39) while 4, B, C, (C; = C) and E are arbitrary constants.
Equations (42} and (43) can be read from

LH +EF=0 . | (44)
and
M
Hi+Y CIYP2=0 (M=23,..) (45)
n=2% - .

respectively. Using the formal series symmetry approach [7] and/or the standard Lie point
symmetry approach, one can easily verify that the models (43) and (44) possess exactly the
same Lie point symmetries as those of the KP equation which have been given in [15] and
constitute the Kac—Moody—Virasoro-type algebra structure.

Using different realizations of the Virasoro-type algebra (1) and the same procedure
given here, not only can we obtain all the known (2 + 1)-dimensional integrable models
but also a large number of new integrable models under the condition that they possess the
Virasoro-type infinite dimensional symmetry algebra. Models obtained in this way need to
be studied further, in particular to find whether the new models are integrable or not under
the other traditional condition.

This work was supported by the Nature Sciences Foundation of China and the Natural
Science Foundation of Zhejiang Province of China. One of the authors (Lou} would like to
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